
Multi-Agent Continuous Motion DES Rosenthal and Yang, 2018

Multi-Agent Continuous Motion Simulation using
Discrete Events

Jack Rosenthal
Colorado School of Mines

Computer Science Department
jrosenth@mines.edu

Qin Yang
Colorado School of Mines

Computer Science Department
qinyang@mines.edu

Abstract—Multi-agent systems with continuous mo-
tion (such as swarm robotics systems) are often sim-
ulated in a time-step agent-based simulation system
due to the relative ease of implementing an emergent
behavior in agent-based simulations. The disadvantage
of this approach is that simulation accuracy is propor-
tional to the size of the time-step in the system, and as
the size of the time-step decreases, the computational
time required to run the simulation increases.

Our paper proposes a modified discrete event simula-
tion technique for simulating many agents operating in
the same continuous space. We do so by adding two new
techniques to a discrete event simulation we call cross-
cutting and cancellation. Finally, we provide an evalu-
ation of the computational complexity of our modified
discrete event simulation technique when compared
to time-step agent-based simulations through a simple
swarm robotics scenario.

I. Introduction
Simulating continuous motion of many agents in the

same space is non-trivial to implement, as the motions of
one agent may depend on the motions of the surrounding
agents. Often times, the system may be thought of using
emergent behaviors; that is, each agent follows a simple
set of rules in order to accomplish a behavior much greater
than the sum of its parts.

Emergent behaviors are easy to implement in a time-
step agent-based simulation, as the individuals behaviors
can simply be encoded as a set of predicates and the
resulting transition to the agent at each time step. While
this model has the advantage of easy implementation and
trivial verification, it is not very computationally efficient
as the computational time required is proportional to the
amount of steps in the simulation.

Certain multi-agent systems need to be encoded using a
time-step agent-based simulation. For example, consider
Conway’s Game of Life [1], a cellular automaton: each
agent fundamentally may only make a plan for the next
step in the simulation by the very nature of the game. But
in some systems, agents may plan for a continuous motion
and only adjust their plan when they need to. For example,
a driver of a vehicle may have their entire route planned
ahead of time, but may have to make changes based on
their simple rules for driving on the road (avoid accidents
with other vehicles, don’t drive on closed roads, etc.) For
the latter kind of simulation, we can save computational

time and improve simulation accuracy by implementing
as a discrete event simulation rather than a time step
model, at the cost of reduced implementation ease, and
significantly reduced ease of verifying the computational
model.

This paper extends the traditional discrete event sim-
ulation model by adding two new techniques to support
continuous motion simulation with multiple agents:

1) Events may now be cancelled. In terms of a typi-
cal discrete event simulation software system, this
means that previously scheduled events may be
removed from the event queue (or are otherwise
prevented from being processed) before they are
processed.

2) Events must provide cross-cutting. In terms of a
typical discrete event simulation software system,
events which interfere with the completion of other
events must trigger the cancellation and rescheduling
to occur.

Our paper implements these techniques for modeling
continuous motion of multiple agents under the following
technique:

1) When a simulation agent A makes an initial plan,
they schedule an event EA1 indicating the planned
time of arrival at the desired position and create con-
tinuous functions which will represent their position
and distance traveled with respect to the simulation
clock as they move to that position.

2) When a simulation agent B executes an event EB1

which cross-cuts (prevents) A’s plan from completing
as intended, simulation agent A will devise a new
plan, evaluating their previously derived continuous
position and distance functions, updating their dis-
tance traveled accordingly, and derives new position
and distance traveled functions from their previously
evaluated position. A will then schedule the new
event EA2 indicating their new plan for arrival.

Figure 1 shows a scenario derived from above example in
a picture.

The remainder of the paper is organized as follows:
Section II discusses related work in the field of both
simulation, multi-agent systems, and robotics, section III
formally defines the problem we are trying to solve, sec-

Page 1 of 5



Multi-Agent Continuous Motion DES Rosenthal and Yang, 2018

A

EB1

EA1

EA2

B

EB2

fA
1
(t
)

fA
1
(t
)

fA2(t)

f
B
1 (t)

Fig. 1. Initially, agent A plans on arrival at the point indicated by
EA1 with continuous travel function fA1(t). Then, agent B schedules
travel to the point indicated by EB2, but realizes this will cause
collision with A, and A would notice this at time tc. B then schedules
EB1 for time tc to indicate to A to change the plan of travel. When
EB1 is executed, A then evaluates fA1(tc) to determine its position,
and creates a new travel function fA2(t) indicating the planned travel
to the point indicated by EA2. Presumably, at this point A may wish
to schedule another event to reach its initial desired position.

tion IV defines a generalized simulation technique for
implementing a discrete event simulation with multiple
agents in motion through a continous space, and section V
evaluates our simlulation technique using a scenario in
swarm robotics. Finally, section VI draws conclusions from
our work.

II. Related Work
Swarm robotics in a new and rising field, and many

simulators for swarm robotics systems have been devel-
oped. For example, ARGoS [2], Gazebo [3], USARSim [4],
Webots [5], and MuRoSimF [6] are all simulators for multi-
robot systems. However, all of these simulators use a time-
step agent-based model for their simulations. Our com-
putational model is implemented using a discrete event
simulation (see [7, p. 3] for the definition of a discrete event
simulation), which is a fundamentally different simulation
model than all of the previously mentioned simulators. To
our knowledge, we are the first to simulate a multi-agent
robot system using a discrete event simulation.

Cancellation is not a new technique in discrete event
simulations. [8] includes canceling edges in their event
graph theory, and even [9] and [10] both show how can-
celing events can be eliminated from a simulation model:
cancellation is merely a convenience from a software stand-
point. To our knowledge, we are the first to take advantage
of cancellation in discrete event simulations to make multi-
agent continuous motion possible.

III. Problem Statement
Our problem can be formally defined as followed:

Given N (N ⩾ 2) agents in a shared k-
dimensional (k ⩾ 2) coordinate system, for which

the agents preform some amount of planning that
may change, devise a generalized technique used
to implement a discrete event simulation of the
agents motion in the continuous space.

In addition, we will discuss technique to prevent collision
of agents in the space, although this is not always needed
(for example, a colony of ants often times will climb on
top of each other, so the technique allows for simulation
of agents directly on the same point).

IV. Simulation Technique
In order to discuss the techniques for writing a discrete

event simulation of multiple agents in a continuous space,
we must first define the common action of the agents:
travel. While in the real world, travelling and planning
algorithms may be implemented continuously, or in a
time-step based simulation from step-to-step, we must
extend the traditional definitions of travel to support
usage in a discrete event simulation:

Travel: travel is the act of planning a complete
path from one position (the start) to another
(the goal), and attempting to execute that plan
at least partially, completing the plan unless
another reason arises.

For an agent to preform travel, they must take ad-
vantage of our cross-cutting method. Our cross-cutting
method is outlined in Algorithm 1.

Algorithm 1 Cross-cutting Travel Algorithm
procedure InitializeAgent(A,Ai)

▷ The agent must have an initial cross-cutting func-
tion when it is created

pA(t)← t 7→ Ai

end procedure
procedure Travel(A,An, c, P )

▷ Agent A plans travel to point An at time c with
planning function P

▷ Before updating the cross-cutting function, the
simulation may want to make note of other intermediate
variables, such as distance traveled

pA(t)← P (pA(c), An)
for all B, where B is an agent and not ourselves do

Symbolically determine if Bp(t) has an intersec-
tion with Ap(t)

Schedule cancellation and notice events appropri-
ately

end for
end procedure

A. Planning Considerations
While Algorithm 1 is sufficient to prevent collision, it

always considers the agent who scheduled travel after
another to have the precedence in collision avoidance.

In order to avoid rescheduling the initial agent’s travel,
the planning algorithm used may wish to consider the

Page 2 of 5



Multi-Agent Continuous Motion DES Rosenthal and Yang, 2018

travel of the other agents in the system and plan around
some (or all) of their routes. Taking this into account, the
precedence of the agents in the system can be considered
in any order.

V. Evaluation: Using a Simple Swarm Robotics
Scenario

To evaluate the effectiveness of our generalized simula-
tion approach, we implement a simple scenario in swarm
robotics to simulate using our techniques:

• Robots are the agents in the system. Each robot has
a continuous 2-dimensional position, and maintains
an internal state of the distance traveled.

• Tasks appear at specified times and locations. Each
task has a defined radius, which specifies the distance
at which the task may be circled in order to preform
work on it.

• When a task appears, a selected set of robots goes
to the task to preform work on it. When all robots
selected are at the task, they begin circling around
it. The selection function can be any partitioning
function, but we implement as a simple split into k
partitions based on robot id algorithm1

We define the following event types to handle this
simulation:

• RobotCreated: A new robot has appeared in the
system, and its initial cross-cutting function has been
set.

• TaskCreated: A new task has been created. This
event causes the robots to partition and spawns
BeginTravelToTask events for the robots who travel
to the task.

• BeginTravelToTask: The robot has begun travel to a
task, and has scheduled an ArrivalAtTask for when
it plans to arrive. The cross-cutting function is eval-
uated to determine current position, and the internal
distance measure of the robot is updated accordingly.
This event has the ability to cancel events, as the
robot may not be travelling to where it was originally.

• ArrivalAtTask: The robot has arrived at the task,
and is ready to begin work. If all robots have arrived
at the task, a TaskBegin event is created. This event
may be cancelled, as simulation agents may begin
travel to another task once they are already on the
way to the task.

• TaskBegin: All robots have arrived at the task, and
work begins on the task. When this happens, the
cross-cutting function of the robot has been updated
to reflect their motion in a circle around the task.
This event may be cancelled for the same reasons as
ArrivalAtTask.

1This approach may seem too simple, but we are using this to test
and evaluate the effectiveness of our simulation technique rather than
of our planning technique. If one were using our simulation technique
to implement a novel planning algorithm, presumably, this approach
would be better.

Figures 2, 3, and 4 show a visualization of the various
parts of the simulation.

t = 0.0

1

3

7

6

2

5

4

9

8

Fig. 2. At the beginning of the simulation with N = 9 robots, the
robots start on the left hand side.

t = 7.2

1

1

3

76

2

5

4 9
8

Fig. 3. At t = 1, task 1 appears, and the robots navigate to the task.

We implemented the simulation in Python 3.6 and used
Python’s heapq module for our underlying event queue
data structure. The simulation software can be obtained
at the following URL:

Page 3 of 5



Multi-Agent Continuous Motion DES Rosenthal and Yang, 2018

t = 46.7

1
2

34

1

37

6

2

54
9

8

Fig. 4. As new tasks appear, the robots partition themselves amongst
the tasks.

https://github.com/jackrosenthal/swarm-des

A. Performance Evaluation
The discrete event simulation technique will outperform

a time-step based technique (arbitrarily) when large inter-
vals are placed between different tasks, as the time-step
simulation has to simulate the intermediate time intervals.
But how does the simulation preform when given closely-
spaced tasks (resulting in a large number of canceled
events)?

To answer this question, we tested with 2 tasks placed at
the same time. This causes the robots to initially schedule
the first scheduled task, then half of the robots will have
to cancel an event and go to the second task instead.

Tests were preformed on Intel® Core™ i7-6700K CPU
at 4.00 GHz running Linux. Results for this selected set
of parameters can be seen in Table I. Note that these
selected set of parameters was an edge case designed to
cause many cancellations and is not representative of the
overall performance of the simulation.

TABLE I
Overlapping Tasks: Performance

Robots Execution Time (seconds)
50 0.06
100 0.09
500 0.36
1000 1.13
2000 4.24
5000 18.61

The notable decay in performance is a result of the
large heap event queue with cancelled events sitting in
it. Performance for this edge case could be increased by
switching to a more efficient data structure for event list
management (such as Henriksen’s Algorithm [11], a hybrid
data structure overlaying a binary search tree on a linked
list) or even eliminating cancellation from the simulation
model [9].

VI. Conclusion
Our work introduces discrete event simulation to the

simulation of continuous multi-agent systems, a field which
previously only implemented simulations using time-step
based models. By doing so, implementers of simulations
are able to simulate their models for time scales which
would be infusible in a time-step simulation.

Implementing in a discrete event simulation does have
a number of drawbacks:

1) Developing the computational model requires sig-
nificantly more effort: extra care must be taken to
developing appropriate planning algorithms for the
simulation rather than simply encoding the agent’s
logic for each time-step.

2) Verification of the computational model is no longer
trivial as it is with time-step agent-based simula-
tions. We verified our computational model using a
visualization to ensure that the cross-cutting func-
tions behaved as we thought we had made them.
Developing better verification procedures for com-
putational models of these systems could be further
work in this area.

Simulation is important to the field of robot planning.
By implementing motion planning algorithms in simula-
tion (especially stochastic algorithms), the performance of
the planning algorithm can be evaluated without the need
for many expensive robots. By implementing in a discrete
event simulation, time scales which would be infeasible in
traditional time-step simulations become computable, at
the cost of reduced ease of implementation and verifica-
tion.

References
[1] M. Gardner, “The fantastic combinations of john

conway’s new solitaire game life,” Scientific Ameri-
can, vol. 223, pp. 120–123, 1970.

[2] C. Pinciroli and V. Trianni, “Argos: A modu-
lar, multi-engine simulator for heterogeneous swarm
robotics,” 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011.

[3] N. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-robot
simulator,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3, pp. 2149–
2154, Apr. 2004.

Page 4 of 5

https://github.com/jackrosenthal/swarm-des


Multi-Agent Continuous Motion DES Rosenthal and Yang, 2018

[4] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C.
Scrapper, “Usarsim: A robot simulator for research
and education,” pp. 1400–1405, May 2007.

[5] O. Michel, “Cyberbotics ltd. webots™: Professional
mobile robot simulation,” International Journal of
Advanced Robotic Systems, vol. 1, no. 1, p. 5, 2004.
doi: 10.5772/5618. [Online]. Available: https://doi.
org/10.5772/5618.

[6] M. Friedmann, K. Petersen, and O. Von Stryk,
“Simulation of multi-robot teams with flexible level
of detail,” Transactions of The Society for Model-
ing and Simulation International - SIMULATION,
vol. 5325, pp. 29–40, Nov. 2008.

[7] L. M. Leemis and S. K. Park, Discrete Event Simu-
lation: A First Course. 2006, isbn: 9780131429178.

[8] L. Schruben, “Simulation modeling with event
graphs,” Commun. ACM, vol. 26, no. 11, pp. 957–
963, Nov. 1983, issn: 0001-0782. doi: 10.1145/182.
358460. [Online]. Available: http://doi.acm.org/10.
1145/182.358460.

[9] E. L. Savage and L. W. Schruben, “Eliminating
event cancellation in discrete event simulation,” in
Proceedings of the 27th Conference on Winter Sim-
ulation, ser. WSC ’95, Arlington, Virginia, USA:
IEEE Computer Society, 1995, pp. 744–750, isbn: 0-
7803-3018-8. doi: 10.1145/224401.224722. [Online].
Available: http : / / dx . doi . org / 10 . 1145 / 224401 .
224722.

[10] R. G. Ingalls, D. J. Morrice, and A. B. Whinston,
“Eliminating canceling edges from the simulation
graph model methodology,” in Proceedings of the
28th Conference on Winter Simulation, ser. WSC
’96, Coronado, California, USA: IEEE Computer
Society, 1996, pp. 825–832, isbn: 0-7803-3383-7. doi:
10 .1145/256562 .256821. [Online]. Available: http :
//dx.doi.org/10.1145/256562.256821.

[11] J. O. Henriksen, “Event list management: A tuto-
rial,” pp. 543–551, Jan. 1983.

Page 5 of 5

https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://doi.org/10.1145/182.358460
https://doi.org/10.1145/182.358460
http://doi.acm.org/10.1145/182.358460
http://doi.acm.org/10.1145/182.358460
https://doi.org/10.1145/224401.224722
http://dx.doi.org/10.1145/224401.224722
http://dx.doi.org/10.1145/224401.224722
https://doi.org/10.1145/256562.256821
http://dx.doi.org/10.1145/256562.256821
http://dx.doi.org/10.1145/256562.256821

	Introduction
	Related Work
	Problem Statement
	Simulation Technique
	Planning Considerations

	Evaluation: Using a Simple Swarm Robotics Scenario
	Performance Evaluation

	Conclusion

